Base.HashtblA hash table is a mutable data structure implementing a map between keys and values. It supports constant-time lookup and in-place modification.
As a simple example, we'll create a hash table with string keys using the create constructor, which expects a module defining the key's type:
let h = Hashtbl.create (module String);;
val h : (string, '_a) Hashtbl.t = <abstr>We can set the values of individual keys with set. If the key already has a value, it will be overwritten.
      Hashtbl.set h ~key:"foo" ~data:5;;
      - : unit = ()
      Hashtbl.set h ~key:"foo" ~data:6;;
      - : unit = ()
      Hashtbl.set h ~key:"bar" ~data:6;;
      - : unit = ()We can access values by key, or dump all of the hash table's data:
      Hashtbl.find h "foo";;
      - : int option = Some 6
      Hashtbl.find_exn h "foo";;
      - : int = 6
      Hashtbl.to_alist h;;
      - : (string * int) list = [("foo", 6); ("bar", 6)]change lets us change a key's value by applying the given function:
      Hashtbl.change h "foo" (fun x ->
       match x with
       | Some x -> Some (x * 2)
       | None -> None
      );;
      - : unit = ()
      Hashtbl.to_alist h;;
      - : (string * int) list = [("foo", 12); ("bar", 6)]We can use merge to merge two hashtables with fine-grained control over how we choose values when a key is present in the first ("left") hashtable, the second ("right"), or both. Here, we'll cons the values when both hashtables have a key:
      let h1 = Hashtbl.of_alist_exn (module Int) [(1, 5); (2, 3232)] in
      let h2 = Hashtbl.of_alist_exn (module Int) [(1, 3)] in
      Hashtbl.merge h1 h2 ~f:(fun ~key:_ -> function
        | `Left x -> Some (`Left x)
        | `Right x -> Some (`Right x)
        | `Both (x, y) -> if x=y then None else Some (`Both (x,y))
      ) |> Hashtbl.to_alist;;
      - : (int * [> `Both of int * int | `Left of int | `Right of int ]) list =
      [(2, `Left 3232); (1, `Both (5, 3))]We provide a sexp_of_t but not a t_of_sexp for this type because one needs to be explicit about the hash and comparison functions used when creating a hashtable. Note that Hashtbl.Poly.t does have [@@deriving sexp], and uses OCaml's built-in polymorphic comparison and and polymorphic hashing.
The module you pass to create must have a type that is hashable, sexpable, and comparable.
Example:
        Hashtbl.create (module Int);;
        - : (int, '_a) Hashtbl.t = <abstr>;;val of_alist : 
  ?growth_allowed:bool ->
  ?size:int ->
  'a Key.t ->
  ('a * 'b) list ->
  [ `Ok of ('a, 'b) t | `Duplicate_key of 'a ]Example:
         Hashtbl.of_alist (module Int) [(3, "something"); (2, "whatever")]
         - : [ `Duplicate_key of int | `Ok of (int, string) Hashtbl.t ] = `Ok <abstr>val of_alist_report_all_dups : 
  ?growth_allowed:bool ->
  ?size:int ->
  'a Key.t ->
  ('a * 'b) list ->
  [ `Ok of ('a, 'b) t | `Duplicate_keys of 'a list ]Whereas of_alist will report Duplicate_key no matter how many dups there are in your list, of_alist_report_all_dups will report each and every duplicate entry.
For example:
        Hashtbl.of_alist (module Int) [(1, "foo"); (1, "bar"); (2, "foo"); (2, "bar")];;
        - : [ `Duplicate_key of int | `Ok of (int, string) Hashtbl.t ] = `Duplicate_key 1
        Hashtbl.of_alist_report_all_dups (module Int) [(1, "foo"); (1, "bar"); (2, "foo"); (2, "bar")];;
        - : [ `Duplicate_keys of int list | `Ok of (int, string) Hashtbl.t ] = `Duplicate_keys [1; 2]val of_alist_or_error : 
  ?growth_allowed:bool ->
  ?size:int ->
  'a Key.t ->
  ('a * 'b) list ->
  ('a, 'b) t Or_error.tval of_alist_multi : 
  ?growth_allowed:bool ->
  ?size:int ->
  'a Key.t ->
  ('a * 'b) list ->
  ('a, 'b list) tCreates a "multi" hashtable, i.e., a hashtable where each key points to a list potentially containing multiple values. So instead of short-circuiting with a `Duplicate_key variant on duplicates, as in of_alist, of_alist_multi folds those values into a list for the given key:
      let h = Hashtbl.of_alist_multi (module Int) [(1, "a"); (1, "b"); (2, "c"); (2, "d")];;
      val h : (int, string list) Hashtbl.t = <abstr>
      Hashtbl.find_exn h 1;;
      - : string list = ["b"; "a"]val create_mapped : 
  ?growth_allowed:bool ->
  ?size:int ->
  'a Key.t ->
  get_key:('r -> 'a) ->
  get_data:('r -> 'b) ->
  'r list ->
  [ `Ok of ('a, 'b) t | `Duplicate_keys of 'a list ]Applies the get_key and get_data functions to the 'r list to create the initial keys and values, respectively, for the new hashtable.
create_mapped get_key get_data [x1;...;xn]
= of_alist [get_key x1, get_data x1; ...; get_key xn, get_data xn]Example:
        let h =
          Hashtbl.create_mapped (module Int)
            ~get_key:((fun x -> x)[@local])
            ~get_data:((fun x -> x + 1)[@local])
           [1; 2; 3];;
        val h : [ `Duplicate_keys of int list | `Ok of (int, int) Hashtbl.t ] = `Ok <abstr>
        let h =
          match h with
          | `Ok x -> x
          | `Duplicate_keys _ -> failwith ""
        in
        Hashtbl.find_exn h 1;;
        - : int = 2val create_with_key : 
  ?growth_allowed:bool ->
  ?size:int ->
  'a Key.t ->
  get_key:('r -> 'a) ->
  'r list ->
  [ `Ok of ('a, 'r) t | `Duplicate_keys of 'a list ]create_with_key ~get_key [x1;...;xn]
= of_alist [get_key x1, x1; ...; get_key xn, xn] val create_with_key_or_error : 
  ?growth_allowed:bool ->
  ?size:int ->
  'a Key.t ->
  get_key:('r -> 'a) ->
  'r list ->
  ('a, 'r) t Or_error.tval group : 
  ?growth_allowed:bool ->
  ?size:int ->
  'a Key.t ->
  get_key:('r -> 'a) ->
  get_data:('r -> 'b) ->
  combine:('b -> 'b -> 'b) ->
  'r list ->
  ('a, 'b) tLike create_mapped, applies the get_key and get_data functions to the 'r
      list to create the initial keys and values, respectively, for the new hashtable -- and then, like add_multi, folds together values belonging to the same keys. Here, though, the function used for the folding is given by combine (instead of just being a cons).
Example:
         Hashtbl.group (module Int)
           ~get_key:((fun x -> x / 2)[@local])
           ~get_data:((fun x -> x)[@local])
           ~combine:((fun x y -> x * y)[@local])
            [ 1; 2; 3; 4]
         |> Hashtbl.to_alist;;
         - : (int * int) list = [(2, 4); (1, 6); (0, 1)]val clear : (_, _) t -> unitAttempting to modify (set, remove, etc.) the hashtable during iteration (fold, iter, iter_keys, iteri) will raise an exception.
val iter : (_, 'b) t -> f:('b -> unit) -> unitIterates over both keys and values.
Example:
      let h = Hashtbl.of_alist_exn (module Int) [(1, 4); (5, 6)] in
      Hashtbl.iteri h ~f:(fun ~key ~data ->
        print_endline (Printf.sprintf "%d-%d" key data));;
      1-4
      5-6
      - : unit = ()val exists : (_, 'b) t -> f:('b -> bool) -> boolval for_all : (_, 'b) t -> f:('b -> bool) -> boolval count : (_, 'b) t -> f:('b -> bool) -> intval length : (_, _) t -> intval is_empty : (_, _) t -> boolChoose an arbitrary key/value pair of a hash table. Returns None if t is empty.
The choice is deterministic. Calling choose multiple times on the same table returns the same key/value pair, so long as the table is not mutated in between. Beyond determinism, no guarantees are made about how the choice is made. Expect bias toward certain hash values.
This hash bias can lead to degenerate performance in some cases, such as clearing a hash table using repeated choose and remove. At each iteration, finding the next element may have to scan farther from its initial hash value.
val choose_randomly : 
  ?random_state:Random.State.t ->
  ('a, 'b) t ->
  ('a key * 'b) optionChooses a random key/value pair of a hash table. Returns None if t is empty.
The choice is distributed uniformly across hash values, rather than across keys themselves. As a consequence, the closer the keys are to evenly spaced out in the table, the closer this function will be to a uniform choice of keys.
This function may be preferable to choose when nondeterministic choice is acceptable, and bias toward certain hash values is undesirable.
val choose_randomly_exn : 
  ?random_state:Random.State.t ->
  ('a, 'b) t ->
  'a key * 'bLike choose_randomly. Raises if t is empty.
add and add_exn leave the table unchanged if the key was already present.
change t key ~f changes t's value for key to be f (find t key).
update t key ~f is change t key ~f:(fun o -> Some (f o)).
update_and_return t key ~f is update, but returns the result of f o.
map t f returns a new table with values replaced by the result of applying f to the current values.
Example:
      let h = Hashtbl.of_alist_exn (module Int) [(1, 4); (5, 6)] in
      let h' = Hashtbl.map h ~f:((fun x -> x * 2)[@local]) in
      Hashtbl.to_alist h';;
      - : (int * int) list = [(5, 12); (1, 8)]Like map, but the function f takes both key and data as arguments.
Returns a new table by filtering the given table's values by f: the keys for which f applied to the current value returns Some are kept, and those for which it returns None are discarded.
Example:
      let h = Hashtbl.of_alist_exn (module Int) [(1, 4); (5, 6)] in
      Hashtbl.filter_map h ~f:((fun x -> if x > 5 then Some x else None)[@local])
      |> Hashtbl.to_alist;;
      - : (int * int) list = [(5, 6)]Like filter_map, but the function f takes both key and data as arguments.
Returns new tables with bound values partitioned by f applied to the bound values.
val partition_mapi : 
  ('a, 'b) t ->
  f:(key:'a key -> data:'b -> ('c, 'd) Either.t) ->
  ('a, 'c) t * ('a, 'd) tLike partition_map, but the function f takes both key and data as arguments.
Returns a pair of tables (t1, t2), where t1 contains all the elements of the initial table which satisfy the predicate f, and t2 contains the rest.
Like partition_tf, but the function f takes both key and data as arguments.
find_or_add t k ~default returns the data associated with key k if it is in the table t, and otherwise assigns k the value returned by default ().
Like find_or_add but default takes the key as an argument.
find t k returns Some (the current binding) of k in t, or None if no such binding exists.
find_exn t k returns the current binding of k in t, or raises Stdlib.Not_found or Not_found_s if no such binding exists.
val find_and_call : 
  ('a, 'b) t ->
  'a key ->
  if_found:('b -> 'c) ->
  if_not_found:('a key -> 'c) ->
  'cfind_and_call t k ~if_found ~if_not_found
is equivalent to:
match find t k with Some v -> if_found v | None -> if_not_found k
except that it doesn't allocate the option.
val find_and_call1 : 
  ('a, 'b) t ->
  'a key ->
  a:'d ->
  if_found:('b -> 'd -> 'c) ->
  if_not_found:('a key -> 'd -> 'c) ->
  'cJust like find_and_call, but takes an extra argument which is passed to if_found and if_not_found, so that the client code can avoid allocating closures or using refs to pass this additional information. This function is only useful in code which tries to minimize heap allocation.
find_and_remove t k returns Some (the current binding) of k in t and removes it, or None is no such binding exists.
val merge : 
  ('k, 'a) t ->
  ('k, 'b) t ->
  f:
    (key:'k key ->
      [ `Left of 'a | `Right of 'b | `Both of 'a * 'b ] ->
      'c option) ->
  ('k, 'c) tMerges two hashtables.
The result of merge f h1 h2 has as keys the set of all k in the union of the sets of keys of h1 and h2 for which d(k) is not None, where:
d(k) =
f ~key:k (`Left d1) if k in h1 maps to d1, and h2 does not have data for k;f ~key:k (`Right d2) if k in h2 maps to d2, and h1 does not have data for k;f ~key:k (`Both (d1, d2)) otherwise, where k in h1 maps to d1 and k in h2 maps to d2.Each key k is mapped to a single piece of data x, where d(k) = Some x.
Example:
      let h1 = Hashtbl.of_alist_exn (module Int) [(1, 5); (2, 3232)] in
      let h2 = Hashtbl.of_alist_exn (module Int) [(1, 3)] in
      Hashtbl.merge h1 h2 ~f:(fun ~key:_ -> function
        | `Left x -> Some (`Left x)
        | `Right x -> Some (`Right x)
        | `Both (x, y) -> if x=y then None else Some (`Both (x,y))
      ) |> Hashtbl.to_alist;;
      - : (int * [> `Both of int * int | `Left of int | `Right of int ]) list =
      [(2, `Left 3232); (1, `Both (5, 3))]val merge_into : 
  src:('k, 'a) t ->
  dst:('k, 'b) t ->
  f:(key:'k key -> 'a -> 'b option -> 'b Merge_into_action.t) ->
  unitEvery key in src will be removed or set in dst according to the return value of f.
val data : (_, 'b) t -> 'b listReturns the list of all data for given hashtable.
filter_inplace t ~f removes all the elements from t that don't satisfy f.
val filter_inplace : (_, 'b) t -> f:('b -> bool) -> unitval map_inplace : (_, 'b) t -> f:('b -> 'b) -> unitmap_inplace t ~f applies f to all elements in t, transforming them in place.
val filter_map_inplace : (_, 'b) t -> f:('b -> 'b option) -> unitfilter_map_inplace combines the effects of map_inplace and filter_inplace.
equal f t1 t2 and similar f t1 t2 both return true iff t1 and t2 have the same keys and for all keys k, f (find_exn t1 k) (find_exn t2 k). equal and similar only differ in their types.
Returns the list of all (key, data) pairs for given hashtable.
remove_if_zero's default is false.
add_multi t ~key ~data if key is present in the table then cons data on the list, otherwise add key with a single element list.
remove_multi t key updates the table, removing the head of the list bound to key. If the list has only one element (or is empty) then the binding is removed.
find_multi t key returns the empty list if key is not present in the table, returns t's values for key otherwise.
include Invariant.S2 with type ('a, 'b) t := ('a, 'b) tval invariant : ('a -> unit) -> ('b -> unit) -> ('a, 'b) t -> unitmodule type Accessors = sig ... endmodule type Creators = sig ... endmodule type Multi = sig ... endmodule type S_poly = sig ... endmodule type S_without_submodules = sig ... endmodule type For_deriving = sig ... endmodule Key : sig ... endmodule Merge_into_action : sig ... endtype nonrec ('key, 'data, 'z) create_options =
  ?growth_allowed:bool ->
  ?size:int ->
  'key Key.t ->
  'zM is meant to be used in combination with OCaml applicative functor types:
include For_deriving with type ('a, 'b) t := ('a, 'b) tmodule type Sexp_of_m = sig ... endmodule type M_of_sexp = sig ... endmodule type M_sexp_grammar = sig ... endmodule type Equal_m = sig ... endval m__t_sexp_grammar : 
  (module M_sexp_grammar with type t = 'k) ->
  'v Sexplib0.Sexp_grammar.t ->
  ('k, 'v) t Sexplib0.Sexp_grammar.t